Criteria for Quick and Consistent Synthesis of Poly(glycerol sebacate) for Tailored Mechanical Properties.

نویسندگان

  • Xinda Li
  • Albert T-L Hong
  • Nilanjon Naskar
  • Hyun-Joong Chung
چکیده

Poly(glycerol sebacate) (PGS) and its derivatives make up an attractive class of biomaterial owing to their tunable mechanical properties with programmable biodegradability. In practice, however, the application of PGS is often hampered by frequent inconsistency in reproducing process conditions. The inconsistency stems from the volatile nature of glycerol during the esterification process. In this study, we suggest that the degree of esterification (DE) can be used to predict precisely the physical status, the mechanical properties, and the degradation of the PGS materials. Young's modulus is shown to linearly increase with DE, which is in agreement with an entropic spring theory of rubbers. To provide a processing guideline for researchers, we also provide a physical status map as a function of curing temperature and time. The amount of glycerol loss, obtainable by monitoring the evolution of the total mass loss and the DE during synthesis, is shown to make the predictions even more precise. We expect that these strategies can be applicable to different categories of polymers that involve condensation polymerization with the volatility of the reactants. In addition, we demonstrate that microwave-assisted prepolymerization is a time- and energy-efficient pathway to obtain PGS. For example, 15 min of microwave time is shown to be as efficient as prepolymerization in nitrogen atmosphere for 6 h at 130 °C. The quick synthesis method, however, causes a severe evaporation of glycerol, resulting in a large distortion in the monomer ratio between glycerol and sebacic acid. Consequently, more rigid PGS is produced under a similar curing condition compared to the conventional prepolymerization method. Finally, we demonstrate that the addition of molecularly rigid cross-linking agents and network-structured inorganic nanoparticles are also effective in enhancing the mechanical properties of the PGS-derived materials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of PGS/CaTiO3 Nano-Composite for Biomedical Application

Biodegradable elastomeric materials are gaining extensive attention in the field of soft tissue engineering. Poly (glycerol sebacate) (PGS) is a novel biocompatible elastomer in this scope. However this polymer has poor mechanical properties especially when the molar ratio of glycerol is higher than sebacic acid. Calcium Titanate (CaTiO3) is a biocompatible ceramic with some degr...

متن کامل

Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review

Poly(glycerol sebacate) (PGS) is a biodegradable polymer increasingly used in a variety of biomedical applications. This polyester is prepared by polycondensation of glycerol and sebacic acid. PGS exhibits biocompatibility and biodegradability, both highly relevant properties in biomedical applications. PGS also involves cost effective production with the possibility of up scaling to industrial...

متن کامل

Highly elastomeric poly(glycerol sebacate)-co-poly(ethylene glycol) amphiphilic block copolymers.

Poly(glycerol sebacate) (PGS), a tough elastomer, has been proposed for tissue engineering applications due to its desired mechanical properties, biocompatibility and controlled degradation. Despite interesting physical and chemical properties, PGS shows limited water uptake capacity (∼2%), thus constraining its utility for soft tissue engineering. Therefore, a modification of PGS that would mi...

متن کامل

A comparative study on poly(xylitol sebacate) and poly(glycerol sebacate): mechanical properties, biodegradation and cytocompatibility.

In order to develop degradable elastomers with a satisfactory combination of flexibility and enzyme-mediated degradation rate, the mechanical properties, enzymatic degradation kinetics and biocompatibility of poly(xylitol sebcate) (PXS) has been systematically investigated in comparison with poly(glycerol sebacate) (PGS). Under the same level of crosslinked density, the PXS elastomer networks h...

متن کامل

Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications.

Matching tissue engineering scaffold modulus to that of native tissue is highly desirable. Effective scaffold modulus can be altered through changes in base material modulus and/or scaffold pore architecture. Because the latter may be restricted by tissue in-growth requirements, it is advantageous to be able to alter the base material modulus of a chosen scaffold material. Here, we show that th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biomacromolecules

دوره 16 5  شماره 

صفحات  -

تاریخ انتشار 2015